Lift and drag in intruders moving through hydrostatic granular media at high speeds.
نویسندگان
چکیده
Recently, experiments showed that forces on intruders dragged horizontally through dense, hydrostatic granular packings mainly depend on the local surface orientation and can be seen as the sum of the forces exerted on small surface elements. In order to understand such forces more deeply, we perform a two-dimensional soft-sphere molecular dynamics simulation, on a similar setup, of an intruder dragged through a 50-50 bi-disperse granular packing, with diameters 0.30 and 0.34 cm. We measure, for both circular and half-circle shapes, the forces parallel (drag) and perpendicular (lift) to the drag direction as functions of the drag speed, with V=10.3-309 cm/s, and intruder depths, with D=3.75-37.5 cm. The drag forces on an intruder monotonically increase with V and D, and are larger for the circle. However, the lift force does not depend monotonically on V and D, and this relationship is affected by the shape of the intruder. The vertical force was negative for the half-circle, but for a small range of V and D, we measure positive lift. We find no sign change for the lift on the circle, which is always positive. The explanation for the nonmonotonic dependence is related to the decrease in contacts on the intruder as V increases. This is qualitatively similar to supersonic flow detachment from an obstacle. The detachment picture is supported by simulation measurements of the velocity field around the intruder and force profiles measured on its surface.
منابع مشابه
Drag induced lift in granular media.
Laboratory experiments and numerical simulation reveal that a submerged intruder dragged horizontally at a constant velocity within a granular medium experiences a lift force whose sign and magnitude depend on the intruder shape. Comparing the stress on a flat plate at varied inclination angle with the local surface stress on the intruders at regions with the same orientation demonstrates that ...
متن کاملDepth-dependent resistance of granular media to vertical penetration.
We measure the quasistatic friction force acting on intruders moving downwards into a granular medium. By utilizing different intruder geometries, we demonstrate that the force acts locally normal to the intruder surface. By altering the hydrostatic loading of grain contacts by a sub-fluidizing airflow through the bed, we demonstrate that the relevant frictional contacts are loaded by gravity r...
متن کاملCooperative dynamics in the penetration of a group of intruders in a granular medium
An object moving in a fluid experiences a drag force that depends on its velocity, shape and the properties of the medium. From this simplest case to the motion of a flock of birds or a school of fish, the drag forces and the hydrodynamic interactions determine the full dynamics of the system. Similar drag forces appear when a single projectile impacts and moves through a granular medium, and t...
متن کاملNumerical investigation of the vertical plunging force of a spherical intruder into a prefluidized granular bed.
The plunging of a large intruder sphere into a prefluidized granular bed with various constant velocities and various sphere diameters is investigated using a state-of-the-art hybrid discrete particle and immersed boundary method, in which both the gas-induced drag force and the contact force exerted on the intruder can be investigated separately. We investigate low velocities, where velocity d...
متن کاملThe Effects of Changes in Height on the Aerodynamic Performance of Automobiles
In this study, the fluid flow around a Pride vehicle was solved in a two-dimensional design using numerical methods. To do so, a two-dimensional figure of a Pride was modeled and gridded, and different surfaces were introduced. Then, governing equations the fluid flow was solved for the standard K-ε model and the appropriate boundary conditions. Areas that increased lift and drag forces...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 88 1 شماره
صفحات -
تاریخ انتشار 2013